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ABSTRACT
Temporal graphs capture the development of relationships
within data throughout time. This model would fit nat-
urally within a streaming architecture, where new events
can be inserted directly into the graph upon arrival from a
data source, being compared to related entities or histori-
cal state. However, the vast majority of graph processing
systems only consider traditional graph analysis on static
data, with some outliers supporting either temporal analy-
sis on similarly static data or traditional analysis on graphs
updated via event streams. In this work we define a tem-
poral graph model which can be updated via event streams
and discuss the challenges of distribution and graph man-
agement. To solve these challenges, we introduce Raphtory,
a distributed temporal graph management system which
maintains the full graph history in-memory, leveraging this
to insert streamed events directly into the graph model with-
out batching and with minimal synchronisation.
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1. INTRODUCTION
Temporal graphs chronicle changes in state throughout

time, unlocking a breadth of analytical possibilities. These
range from expanding upon traditional graph algorithms,
such as providing congestion aware GPS navigation via tem-
poral shortest path[15], to establishing a basis for obtaining
novel insights, for example investigating the long term struc-
tural changes in cryptocurrency transaction graphs [6].

Current distributed graph systems, however, focus pre-
dominantly on traditional graph processing e.g. PowerGraph
[7], GraphLab [10] and GraphFrames [3], with those which
do provide temporal analysis doing so in an offline batched
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fashion, comparing metrics across a range of graph snap-
shots e.g. ImmortalGraph[11], Version Traveler [9] and
GraphTau[8]. This is flawed as snapshotting reduces the
granularity of temporal data to that of the snapshot window,
meaning important updates may be lost. Additionally, this
method does not take advantage of temporal graphs natu-
ral fit within an online/streaming environment where new
events can be compared to related entities or historical state.

Kineograph[2] and Weaver[4] come close to this by stream-
ing updates into a mutating in-memory graph model, along-
side ongoing analysis. However, their approach still batches
changes and analysis is performed on snapshots of the in-
memory graph. Only recently have works such as Chrono-
graph [5] began to rethink this architecture, streaming events
directly into an in-memory graph.

In this paper we introduce such a temporal graph model,
replacing coarse snapshots with fine-grained vertex/edge his-
tories containing all changes to the graph structure and
property values. Once defined, we discuss what a valid
update to this model consists of, establishing protocols for
adding, removing and updating graph entities. We explore
the challenges of distributing the model across a set of ma-
chines, partitioning for high data locality and inserting up-
dates from parallel data sources.

To solve these challenges, we present Raphtory, a dis-
tributed platform implementing the defined model. We then
perform preliminary evaluation of Raphtory, investigating
scalability of throughput when increasing the number of par-
titions and data ingesting Graph Routers.

2. TEMPORAL GRAPH MODEL
A temporal graph G consists of a pair G=〈V,E〉 which

chronicles all transpiring changes to the graph’s member ver-
tices and edges. V is the set of all unique vertices V={v1, v2,
..., vn} which have existed within the graph and E is the
set of all unique edges E={〈v1, v2〉, 〈v2, v3〉, ..., 〈vi, vj〉}. An
edge in this model is defined as an ordered pair of vertices
〈vi, vj〉, depicting directed relationships between vertices in
V ; thus 〈vi, vj〉 is distinct from 〈vj , vi〉.

Each vertex in V and edge in E is assigned a chronolog-
ical history H=

{
〈t1, created〉, 〈t2, deleted〉, ..., 〈tn, created〉

}
which contains all changes to the state of that entity (ei-
ther created or deleted) paired with a timestamp of when
the change occurred (illustrated via logical timestamps e.g.
t1, t2, ..., tn). Thus, each edge and vertex exists for a set
time range, or several time ranges if removed and re-added.
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Each entity (vertex or edge) is additionally assigned a set
of properties P, where a property is defined as a key and a
value history, specifying all previous values associated with
the key and the time at which the change occurred. For ex-
ample, if an entity has been assigned a property keyi then
P (keyi)=

〈
keyi, {〈t1, value1〉, 〈t2, value2〉, ..., 〈tn, valuen〉}

〉
.

These structural and property histories can then be com-
bined to create the overall history of the graph.

To view how an equivalent non-temporal graph would ap-
pear at a given time t, a graph snapshot G(t) may be gen-
erated. G(t) is defined as a pair G(t)=〈V (t), E(t)〉 where
V(t) and E(t) represent the vertices and edges present in G
at time t. For an entity to be considered present, it must
be a member of its equivalent set (V or E) and its history
must denote a creation at time t or at the closest update
prior to t. Present entities will then contain a property set
P(t)=

{
〈key1, value1〉, 〈key2, value2〉...〈keyn, valuen〉

}
com-

prising the values of all associated properties at the closest
update anterior to t. G(t) draws many parallels with the
property graph model[12], but lacks type constraints.

2.1 Graph Updates
Updates to this temporal graph model fall into three cat-

egories: Entity Addition - creation of a vertex or edge; En-
tity Removal - deletion of a vertex or edge; Entity Update
- appending entity property values. Each category has set
prerequisites which must be passed before acceptance into
the graph. For example, a removal is only considered valid
if the entity is present, it cannot be deleted if it does not
currently exist.

Entity Addition. For the addition of a given vertex vi, it
must be checked to see if vi ∈ V . If vi /∈ V it is inserted
(V ′=V ∪ vi) and a history is assigned to vi specifying the
time of its creation H(vi)={〈ti, created〉}. If vi ∈ V , its
history must be inspected to see if the latest state denotes
a removal. Given this is the case, the update is considered
valid and the history is appended to specify that vi is now
present once again H(vi)

′=H(vi) ∪ 〈ti, created〉. If vi was
not previously removed and is currently present within the
graph, the update is considered invalid and is abandoned.

Edge addition necessitates similar prerequisites, requiring
both the source vi and destination vj of an edge 〈vi, vj〉 to
be present within V, thus avoiding hanging edges (an edge
with only a source or destination). If both are present within
the graph, it is checked if 〈vi, vj〉 ∈ E, dictating if the edge
requires insertion into E or if its history requires appending,
in the same fashion as vertex addition.

Furthermore, when inserting a new entity into G the prop-
erty keys it contains must be established, known as the prop-
erty key-set Pks={key1, key2, ..., keyn}. Each key in Pks

must be assigned an initial value (iv) to be placed into the
history alongside the time of entity initialisation (ti), thus
creating the property set P=

{〈
key1, {〈ti, iv1〉}

〉
,〈

key2, {〈ti, iv2〉}
〉
, ...,

〈
keyn, {〈ti, ivn〉}

〉}
.

Entity Removal. For an edge to be eligible for removal
it must first be present within the graph. If so, no infor-
mation is actually deleted, instead its history is appended
with a remove state at the time at which the update oc-
curred H ′=H ∪ 〈ti, deleted〉. Vertex removal is executed in
the same manner, but additionally requires the removal of all
present edges within E where it is a source or destination, as
these are now hanging edges; completed by appending their
history with a remove state at the time of vertex removal.

Entity Update. To update the property value of a vertex
or edge the entity must be present within G and the property
key being updated must be a member of the entities key-set
Pks. For a given key value pair 〈keyi, valuei〉, if keyi ∈ Pks

then the new value is appended into the property history
along with the time the update occurred P(keyi)

′=P (keyi)∪
〈tn, valuei〉. If keyi /∈ Pks, the update is considered invalid
and is discarded.

2.2 Challenges With Distributing The Model
Correctly implementing this model in a distributed en-

vironment poses several challenges. The first issue is how
to partition the graph, deciding what consists a partition
and the best way to split entities spanning across them
(e.g. edge-cut or vertex-cut, as described in PowerGraph[7]).
However, unlike PowerGraph, partitioning a temporal graph
has the additional complexity of managing tradeoffs between
structural locality (proximity to neighbours) and temporal
locality (proximity to an entities history) [11]. Furthermore,
establishing a viable partitioning strategy for a graph built
from a stream of updates is difficult as it cannot be preparti-
tioned and, if not actively managed, data locality will slowly
degrade as more entities are added[14].

Secondly, within a distributed setting, updates are not
ingested via a serial stream and may need to be sent to mul-
tiple partitions, leading to commands arriving out of order.
This must be handled to ensure updates are not processed
incorrectly or dropped unnecessarily. For example, if an
edge add were to arrive before the addition of its source
vertex, the update would be incorrectly abandoned.

Following this, updates affecting entities spanning multi-
ple partitions must be managed/propagated efficiently. For
example, if an edge-cut partitioning strategy were utilised,
edges with the source and destination on different machines
would require synchronisation whenever an update to the
state or properties occurred. The importance of this re-
quirement is multiplied when removing vertices which could
potentially have millions of edges spanning the entire clus-
ter, all of which would require notification of the removal.

Finally, as no updates are removed from memory, even
with a large cluster of machines, eventually the memory lim-
itations would be reached. A protocol must, therefore, be
established to govern what data is retained in memory and
what is offset onto more permanent offline storage.

3. RAPHTORY
To address these challenges we introduce Raphtory, a sys-

tem which maintains temporal graphs over a distributed
set of partitions, ingesting and processing parallel updates
in real time. Raphtory’s architecture is based on the ac-
tor model[1], with the core actor types consisting of Graph
Routers and Graph Partition Managers. Graph Routers at-
tach to a given input stream and convert raw data into one of
the update types established in Section 2.1, forwarding this
to the Graph Partition Manager handling the affected entity.
Graph Partition Managers contain a partition of the overall
graph, split in an edge-cut fashion. As updates arrive via
the pool of Graph Routers the Manager will insert them into
the histories of affected entities at the correct chronological
position. This removes the need for centralised synchroni-
sation, as commands may be executed in any given arrival
order whilst resulting in the same history. An overview of
this can be seen in Figure 1.
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Figure 1: Raphtory Architecture Overview

Raphtory allows the graph to be partitioned by any given
strategy. For initial testing this is a simple hash partition
as it requires no state and can scale along with the number
of Routers and Partition Managers. To deal with memory
constraints the user may set a threshold for memory usage
for each Partition Manager. When this threshold is met,
the Manager will establish a cutoff point where all updates
prior to this time will be transferred to offline storage. This
will begin at the time of the oldest update and move for-
ward through time at a speed proportional to the number
of incoming messages. This additionally has the benefit of
acting as a snapshotting mechanism to allow partitions to
be recovered if the Manager was to crash. However, this is
yet to be fully implemented and is set as future work.

3.1 Graph Router
Graph Routers are the point of ingestion for the data from

which graph updates are derived. Each Router is attached
to an input stream and converts incoming events into graph
updates via user defined functions. These functions may be
as complex as the user requires, ranging from fundamentals,
such as what type of input is converted into a vertex or edge
add, to facilitating more advanced concepts such as sliding
windows or entity decay. Maintaining a larger state for ad-
vanced execution such as this may demand more resources
per actor, but will never require data to be stored on disk.

When a command is generated, it is allocated a times-
tamp unique across all Routers. Graph Partition Managers
can then use this to place the command correctly within the
history of all affected entities. This timestamp is created
via time fields within the raw data, under the assumption
that the events were originally in the correct order at the
source. However, within future work it is intended to create
a method for generating unique orderings when this is not
present. Graph Routers process events fully independently,
operating a fire and forget protocol for outgoing commands,
routing via the established partitioning algorithm. This al-
lows the resources allocated for ingestion to scale dynami-
cally according to the level of incoming data by adding or
removing Routers from the pool as required.

3.2 Graph Partition Manager
Graph Partition Managers maintain a sub-section of the

in-memory graph in the form of vertex and edge objects.
These objects are organised into TrieMaps[13] (one for ver-
tices, one for edges) and contain the entity meta data (such
as its ID), its structural history and a map of its associated
properties. Entity history is maintained via a red-black tree,
providing fast access when reading the history and efficient
insertion time for delayed or out of sequence commands.
Property objects within the associated properties map mir-
ror this structure, containing the property key and their own
tree based history of previous values.

Adding Vertices. When adding a vertex, the vertex map
is checked to see if an object exists for the given vertex
ID. If it does, the objects history will be updated with a
Created state and its properties will be updated with the
new initial values. Note, it is not checked if the vertex is
already present within the graph as a remove command may
have been delayed, requiring the Created state to be present
when it arrives. If no object within the map represents the
given ID, one is instantiated, beginning the entity history
and establishing the property map from a given key-set and
initial values.

Adding Edges. An edge is managed primarily by the
Graph Partition Manager storing its source vertex. If the
destination vertex is stored on the same partition, the edge
is considered ‘local’; if it is stored in another partition the
edge is considered ‘split’. Edges are initialised or updated
in the same fashion as a vertex, however, receipt of an edge
add will also generate vertex add commands for its source
and destination, avoiding possible hanging edges. These will
establish placeholder vertices if the ‘real’ commands are yet
to arrive or be ignored if they are already present. For a
split edge, the Partition Manager will propagate the com-
mands to the destination vertices Manager, requesting it to
handle both this and a mirror copy of the edge. This can be
seen in the edge between vertices 3 and 4 in Figure 1.

Removing Edges. When removing an edge present within
the edge map, the representing objects history will be up-
dated with a Remove state, again not checking if the edge is
already absent as the Created command may arrive later. If
the map does not contain an object representing this edge a
placeholder entity is initialised, beginning the history with
the Remove state. The delayed edge add may then be slot-
ted into the history when it arrives, as well as establishing
the edges property map. If the edge is split, the remove com-
mand will be propagated to the Partition Manager handling
the destination node, as described in Adding Edges.

Removing Vertices. A vertex removal requires insertion
of a Remove state into the history of the vertex and all as-
sociated edges. Unfortunately, as only existing objects can
be interacted with, there is the possibility here for race con-
ditions. Commands creating relevant edges may be delayed
or received after the vertex removal and, therefore, will not
contain this information within their history. For example,
within Figure 1, if the command which removed vertex 3
arrived before the command which added edge 3→4, then
only edge 1→3 would exist when the remove is executed.
1→3 would, therefore, be updated with the new Removal
state, but 3→4 would miss this information.

To prevent this occurring, the Removals contained in ad-
joining vertices must be inserted into the edges history upon
creation. This way, if an edge misses the execution of a
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Figure 2: Initial evaluation of the maximum update
throughput of Partition Managers in various sized
clusters.

vertex removal the information is still present. For local
edges, Remove states can simply be extracted from the his-
tory within the source and destination objects. Split edges,
however, require the Managers storing the source and des-
tination to exchange this information. This does generate
some overhead for edge initialisation, but it is a one time
occurrence and the exchange is non-blocking, inserting the
removes upon arrival as if they were a normal update.

Updating properties. Properties may be updated individ-
ually or as a group. If an object representing the affected
entity exists within the respective map, the new values will
be placed into the history of the property object allocated
for each affected key. If this update is for a split edge, it
will be propagated as with addition or removal. If a prop-
erty update arrives before the creation of the affected entity
then a placeholder object must be utilised until it arrives.

4. EVALUATION
Raphtory actors are containerised via Docker1 and exe-

cute independently, communicating via the Akka messaging
framework2. To evaluate this implementation, several sec-
ondary actor types were created, providing update gener-
ation, benchmarking and live graph analysis; these can be
plugged into an established cluster without disturbing in-
gestion or graph maintenance. Utilising these, a stream of
graph updates were generated and ingested into clusters of
varying size, increasing the throughput until a maximum
was reached. Three different sized clusters were tested, be-
ginning with Cluster1, a ‘singleton’ implementation with one
Graph Router and one Partition Manager, and then dou-
bling the amount of components each time; two of each
(Cluster2), followed by four of each (Cluster4). All clusters
were instantiated on servers containing an Intel Xeon E3-
1284L (8 cores @ 1.8GHz) and 32GB of RAM, with one ma-
chine for each Router/Manager pair. The updates were then
streamed in from a separate server to simulate an external
event source. These events were split into 30% vertex adds,
40% edge adds, 10% vertex removals and 20% edge removals
over a pool of one million unique vertex ID’s. Figure 2 dis-
plays the mean command throughput for each cluster over
five iterations, split into three groups: ‘Restricted’ where
each component was limited to at most one CPU core; ‘Un-
restricted’ where containers could utilise all server resources;
and ‘Unrestricted + Synchronization Messages’ which com-
bined the total commands in the ‘Unrestricted’ group with

1https://www.docker.com/
2https://akka.io/

a count of the inter-manager messages used to synchronize
split edges (as described in section 3.2).

When running in restricted mode Cluster1 produced a
maximum throughput of 7,000 msg/sec, increasing by 85%
for Cluster2 and a further 107% for Cluster4. These are
very promising results, showing that Raphtory makes effi-
cient use of the available facilities and could work well within
an shared/scarce resource environment.

When running in unrestricted mode, utilising the full re-
sources at its disposal, Cluster1 produced a maximum
throughput of 23,000 msg/sec. Interestingly this only in-
creased by 30% to 30,000 in Cluster2, but soared by 90%
to 57,000 in Cluster4. As may be expected, upon investiga-
tion, the dampening of this initial increase was caused by
the swap to a distributed environment; requiring Routers
and Partition Managers in Cluster2 to send inter-server up-
dates, unlike the local communication of Cluster1. Secondly,
as there are no split edges in Cluster1, synchronization mes-
sages are not required. On the other hand, by comparing the
total number of updates processed in Cluster2 against those
just from the Graph Router, over 60% were synchronization
messages. Notably though, a large proportion of these are
caused by the removal of vertices with high in/out degree,
generating updates for all associated edges. Removals such
as this are drastic operations and it is unclear how often
they appear in real datasets. This could, however, be im-
proved by partially batching inter-manager communication
and by better partitioning strategies (as discussed in Sec-
tion 5). Additionally, this effect wasn’t noticed within the
‘Restricted’ tests as the clusters were limited by the amount
of raw data a Router could parse whilst running on one core.

Overall we believe this preliminary testing demonstrates
Raphtory is able to efficiently ingest and store graph events
and scale with the provided resources. However, more test-
ing will be required as the project develops, utilising real
datasets, different use cases and a larger array of machines.

5. CONCLUSION
In this paper we tackle the lack of graph processing sys-

tems which perform online temporal analysis whilst ingest-
ing new data from event streams. To address this, we firstly
introduce a temporal graph model and define what may be
changed in terms of graph structure and meta data. We
discuss the challenges of distributing this model and provide
our solution, Raphtory, which manages the graph history via
a set of Partition Managers, ingesting new events into the
graph via a pool of Graph Routers. Our preliminary exper-
imentation shows that Raphtory scales well in both scarce
and abundant resource environments, but further testing is
required as the project develops.

As a continuation to this work, we first plan to implement
the snapshotting/data offsetting described in Section 3, al-
lowing for longer running tests and development of fault tol-
erance. Following this we intend to replace the current hash
partitioning with the adaptive partition strategy described
in [14], where vertices may decide to migrate to a partition
with a higher number of neighbours to minimise edges span-
ning machines. Finally, we aim to develop ‘live graph anal-
ysis’ actors which will probe the live graph in parallel with
updates, providing fast approximate results. These will be
paired with ‘snapshot analysis’ actors performing the same
algorithm offline to confirm the initial approximation.
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