
KeyMiner: Discovering Keys for Graphs

Morteza Alipourlangouri
Dept. of Computing and Software

McMaster University

alipoum@mcmaster.ca

Fei Chiang
Dept. of Computing and Software

McMaster University

fchiang@mcmaster.ca

ABSTRACT
Keys allow us to uniquely identify entities in a graph database.
They have applications in object identification, entity reso-
lution, knowledge fusion, and social network reconciliation.
Keys also serve as a data quality constraint to not only iden-
tify duplicates, but to restrict updates to those satisfying the
key graph patterns. In this paper, we present our work in
mining keys over graphs. We propose an efficient algorithm
that discovers keys in a graph via frequent subgraph expan-
sion, and present two properties that define a meaningful
key. Lastly, we discuss challenges for key discovery over dy-
namic graphs in spatio-temporal settings.

PVLDB Reference Format:
Morteza Alipourlangouri, Fei Chiang. Discovering Keys for Graphs.
PVLDB, 11 (5): xxxx-yyyy, 2018.
DOI: https://doi.org/TBD

1. INTRODUCTION
Keys are a fundamental integrity constraint used in database

systems to define the set of attributes that uniquely identify
an entity. Keys serve a vital role in databases to main-
tain data quality standards by preventing incorrect inser-
tions and updates as the data naturally evolves over time.
In addition, keys provide clues for duplicate detection (also
referred to as entity resolution), one of the most common
data quality issues facing large organizations [6]. While keys
are often defined by a domain analyst according to applica-
tion and domain requirements, manual specification of keys
is expensive and laborious for large-scale datasets. Exist-
ing techniques have explored mining for keys in relational
data (as part of functional dependency discovery) [10], and
in XML data [4].

The proliferation of graph databases has lead to the study
of integrity constraints over graphs, including functional de-
pendencies [9], and keys [8]. These constraints have shown
to have wide applications to deduplication, citation of digital
objects and knowledge fusion and knowledge base expansion
[6]. Evolving graphs such as knowledge bases and citation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 5
Copyright 2018 VLDB Endowment 2150-8097/18/1.
DOI: https://doi.org/TBD

graphs require keys to uniquely identify objects to ensure re-
liable and accurate deduplication and query answering. In
these dynamic settings, where object properties change fre-
quently and new objects are added, manual specification of
keys is expensive and labor intensive. Automated solutions
are needed to discover keys. Although recent work has pro-
posed techniques to find keys over RDF data [2], these tech-
niques are not applicable for graphs as they do not support:
(i) topological constraints; and (ii) recursive keys (a distinct
feature in graph keys). To the best of our knowledge, there
is no existing work that discovers keys for directed graphs.
Consider the following example where keys help to identify
entities in an evolving database.

Figure 1: Movie instances from IMDB database.

Example 1.1. Figure 1 shows a sample of five movies
from the IMDB movie graph database [1]. Intuitively, a key
can be defined by a topological pattern, and a set of edge
labels, and node types [8]. We can define a key for a type
of entity using a graph pattern, and apply pattern matching
algorithms to identify unique entities in a graph. Figure 2
shows a sample of possible keys to uniquely identify a movie:

Q1(x) : By the movie name (title of the movie).
Q2(x) : By movie name, and year of release.
Q3(x) : By movie name, and a director.
Q4(x) : By movie name, and awards won.
Q5(x) : By movie name, and a specific director.
Q6(x) : A director can be uniquely identified by her name.

The example highlights that many keys are possible, and
this often depends on the data and its semantics. According



Figure 2: Possible keys for movie and director.

to Q1(x), all movies with the same name resolve to the same
movie. This of course does not hold true over time, as Figure
1 shows two different movies titled ‘Bad Boys’ in 1983 (m1)
and in 1995 (m4). Secondly, the domain semantics influence
the quality of a key. For example, Q4(x) indicates a movie is
uniquely identified by its name and awards won. However,
not all movies win awards, and the second condition will lead
to null values for many movies (that have not won awards),
thereby leading to poor coverage and representation across
all movies. To effectively identify keys in graphs, we consider
the following questions:
1. What properties define a meaningful key in a graph?
2. How can we efficiently discover such keys?
3. How can these keys be effectively used in applications?

The example demonstrates the need for automatic discov-
ery of keys over graphs, and to refine these keys over time as
the data evolves. In our preliminary evaluation over knowl-
edge bases, we found similar examples of postulated keys
that became stale as new data is inserted. For example, a
music database used musician name as an initial key. How-
ever, this was no longer sufficient after two musicians named
‘Mick Jones’ (from two different bands ‘Foreigner’ in 1976
and ‘Big Audio Dynamite’ in 1984) posed a conflict.
Contributions. In this paper, we address the above ques-
tions, and present KeyMiner, an algorithm that discovers
keys in graphs. We propose two desirable properties for
keys, and an algorithm for discovering keys in large-scale
graphs. Lastly, we discuss open questions for further explo-
ration, particularly for spatio-temporal graphs.

2. PRELIMINARIES
A directed graph is defined as G(V,E, T, L), where V is a

finite set of vertices, T is a finite set of types, and L is a finite
set of labels. A set of edges is denoted as E ∈ V × L × V ,
i.e., e = (u, l, v) represents an edge from u to v with the
label l that is not equal to edge (v, l, u). Each node v ∈ V
has a type t from T (nodes with no type have t = ∅), and
each node v has a numeric id, denoted by vid. For example,
in Figure 1, ‘movie’ and ‘director’ are node types that are
common among all the instances, and each instance has a
unique id for movies and directors, m1 −m5, and d1 − d5,
respectively.

2.1 Graph Patterns

A graph pattern is a connected, directed graph Q(x) =
(VQ, EQ, TQ, LQ) where VQ is a finite set of entities; EQ is a
finite set of edges; TQ is a function which assigns a specific
type to each v ∈ VQ; and LQ is a set of labels from which
each edge e ∈ EQ has a label l ∈ LQ. A graph pattern Q(x)
is matched in a graph G if there is a subgraph isomorphism
i from Q to G where (i) for each node v ∈ VQ, v ↔ i(v); and
(ii) for each edge e ∈ EQ, LQ(e) = LQ(i(e)). For a graph
pattern Q(x), each node v ∈ VQ can be represented in one
of three formats:
• wildcard v: A node v ∈ VQ that is a wildcard (mod-

eling an entity x) is matched to v′ ∈ V if their re-
spective types are equal (no matching on node ids nor
values is performed). e.g., director in Q3(x).

• variable v: A variable node v (modeling entity x),
v ∈ VQ is matched to v′ ∈ V (v ↔ v′) if their respective
node ids and types are equal, e.g., director in Q5(x).

• value v∗: For two value-based nodes, v∗ ∈ VQ and
v′ ∈ V , v∗ matches v′ if their respective values are
equal, e.g., name* in Q5(x) matches Rick Rosenthal.

For example, to find unique movies in Figure 1 using
Q5(x), we check for equality of values using name*, and
equality of node ids and types using director.

2.2 Keys for Graphs
A key for a graph is defined using a pattern Q(x) for

an entity x [8]. If two subgraph isomorphisms i1 and i2 of
Q(x) are found in graph G, then i1(x)id = i2(x)id, if {∀v ∈
VQ, i1(v) ↔ i2(v) ∧ ∀e ∈ EQ, LQ(i2(e)) = LQ(i2(e))}. This
means the two instances refer to the same entity. For exam-
ple, consider candidate key Q2(x) in Figure 2, that defines a
unique movie based on its name and release year. By using
Q2(x) to match the instances in Figure 1, we obtain the fol-
lowing classification of movies: {{m1}, {m2,m3}, {m4}, {m5}}.
Since m2 and m3 share the same movie title Black & White

and release year 1995, they are considered duplicates, while
movies m1, m4 and m5 are distinct.

Keys in graphs may contain entities as part of the origi-
nal key definition, leading to recursive definitions. For ex-
ample, Figure 2 shows that Q5(x) defines a key for a movie
based on the entity director. To correctly interpret Q5(x),
we must first define a key for the director entity (using the
director’s name), as shown in Q6(x). By applying Q6(x)
to Figure 1, we obtain the following classification for direc-
tors {{d1}, {d2}, {d3, d5}, {d4}}, revealing two references to
the same director Yuri Zelster. We can then apply Q5(x)
as a candidate key to uniquely identify movies in Figure 1,
revealing that all movies m1 - m5 are unique.

Since keys for graphs are defined using graph patterns,
graph pattern mining and matching algorithms form a ba-
sis for key discovery algorithms. In our work, we use the
well-known pattern mining algorithm, GRAMI [7] that has
shown to be efficient in non-distributed settings. We are ex-
ploring the use of distributed graph mining techniques such
as Arabesque [11] that are built on top of Hadoop and Spark,
to increase scalability to extremely large graphs.

3. KeyMiner: DISCOVERING KEYS
Discovering meaningful keys in graphs relies on defining

key properties independent of the application domain and
the data, especially when multiple candidate keys are pos-
sible to identify an entity. We propose two key properties:
minimality and coverage (along with preliminary ideas of



how to quantify these properties), and a key discovery algo-
rithm over graphs.

3.1 Property 1: Minimality
In traditional relational databases, a key is defined as the

set of minimal attributes that uniquely identifies a tuple.
More attributes can be added to a key and still serve as a
key, but these additional attributes are not necessary. We
extend this intuition and define minimal keys in graphs as
those with a simple graph pattern. Specifically, we seek
keys that (i) contain a minimal number of nodes; and (ii)
a minimal number of entity variables (as defined in Section
2.1). Key patterns containing variables elicit recursive keys,
which require longer matching times as pattern matching
must be performed against a graph G for each sub-entity.
The number of wildcards and values can be captured by the
number of nodes since each of these formats does not evoke
recursive keys. We propose Equation (1) as an initial step
to quantify the minimality of a key.

min(Q(x)) = 1− (φ× E1) + ((1− φ)× E2)

m
(1)

Let E1 represent the sum of value and wildcard nodes, and
E2 be the number of variable nodes in the graph pattern
Q(x). The non-zero parameter φ is a user-defined weight
denoting the preference towards simpler (wildcard and value
based) nodes. Let m be a user-defined value representing an
upper bound on the (maximum) number of nodes. The min
values range from (0,1), where larger values indicate more
minimal keys.

3.2 Property 2: Coverage
For a candidate key Q, we define coverage to represent

the number of entities in a graph G captured by Q. We
seek keys that model a maximum number of instances in
G. Consider our earlier example with candidate key Q4(x)
that uniquely defines movies based on its title and awards.
Movies that have not received awards are not covered by
Q4(x). Since each key Q elicits a classification of the in-
stances, where instances within a class are considered du-
plicates, we search for keys that partition the instances into
a maximal number of classes. For example, consider Q3(x)
and Q4(x), which classify the entity instances into the fol-
lowing classes: ΠQ3(x) = {{m1}, {m2}, {m3}, {m4}, {m5}}
and ΠQ4(x) = {{m4}}. We prefer candidate key Q3(x)
as a maximum number of classes is achieved. We define
cov(Q(x)) that measures the coverage for a key Q(x).

cov(Q(x)) =
I × C
N2

(2)

Let I denote the number of instances captured by Q(x),
C is the number of classes after using Q(x) to partition the
I instances, and N is the total number of instances for en-
tity x in graph G. The values in cov(Q(x)) range between
[0, 1], where a value of 0 indicates no instances are cap-
tured by Q(x), and 1 indicates all instances are uniquely
identified. We revisit our candidate keys Q3(x) and Q4(x),
where cov(Q3(x)) = 1, and cov(Q4(x)) = 0.04, indicating
Q3(x) has better coverage than Q4(x). Our coverage mea-
sure finds similarity to existing support-based metrics used
in association rule mining over dynamic graphs where sup-
port is defined as the coverage w.r.t. a time window.

To rank the set of discovered keys, a ranking function,
rank(Q(x)) is needed to preferentially select minimal keys
with maximum coverage. We intend to explore various rank-
ing functions as our next steps. This includes functions that
consider the spatial and temporal locality of data values, i.e.,
in dynamic settings, some key values have greater longevity
and are more likely to hold true for longer periods of time.

3.3 KeyMiner Algorithm
We present, KeyMiner, an algorithm for discovering keys

in a graph database G. KeyMiner mines for keys for each
type t ∈ T , by creating a search tree rooted at node x of
type t, and then expands and traverses the tree to define
a candidate key. Candidate keys are evaluated based on a
ranking function (rank) that evaluates the quality of the key
based on the minimality and coverage properties. Algorithm
1 presents KeyMiner, which takes input graph G and types
T , and returns keys for each type t ∈ T . The mining step is
done via the Discovery algorithm, given in Algorithm 2.

Algorithm 1 KeyMiner

Input: A graph G and set T of types
Output: Candidate keys for all types

1: keys = CreateSet(T );
2: for all type t in T do
3: if keys[t] == null then
4: keys[t]=Discovery(G, t);
5: return keys

To mine for keys for an entity e of type t, the Discovery
Algorithm first creates a graph pattern consisting of a sin-
gle node x of type t. This pattern is expanded upon by
computing the set Gd

t , containing all d-neighbors within a
user-defined radius d of x (line 2), where Gd

t =
⋃

e∈GG
d
e , and

Gd
e is the d-neighbor graph of entity e. We define candidate

keys by iteratively expanding the pattern with a neighbor
from Gd

t , and consider adding values, wildcard and entity
variables one at a time (line 4). We then check whether
the new candidate key is recursive (line 8-12), and use a di-
rected acyclic graph (DAG) to track dependencies between
entities. If a newly added node contains an entity variable
of type t′ (t′ 6= t), we add these two nodes t and t′ into the
DAG with a connecting edge to denote their dependency
(line 9). Cycles in the DAG are broken by removing the
last added dependency (t → t′). If there are no cycles, we
recursively call Discovery on the new node of type t′. Can-
didate keys are selected based on satisfying a user-defined
rank threshold (lines 15-17). We implement an optimization
that prunes candidate keys that do not satisfy a minimum
number of instances (line 18).

Example 3.1. Figure 3 shows a sample search tree for
movies. Each level of the tree is generated by adding a node
to the sub-tree from the previous level. In the first level, we
add all possible node types to the movie entity, and obtain
five candidate keys. For an entity such as director, we gen-
erate keys that can match any graph using either variables
(key k4) or wildcards (k3). Recall in the wildcard case, the
existence of an entity (director) is a sufficient condition for
a match. During the search, a candidate key k is returned if
rank(k) > min rank threshold and no further expansions of



Algorithm 2 Discovery

Input: A graph G and type t
Output: Candidate key for entities of type t

1: p = CreatePattern(x, t);
2: Gd

t = ComputeAllNeighbors(G, t);
3: while keys[t] 6= null do
4: candidates = Expand(p, Gd

t ); //expand p with one

neighbor from Gd
t

5: if candidates == null then
6: return nokey;
7: for all pattern p′ in candidates do
8: if IsRecursive(p′) then
9: Insert(DAG, t, t′); // p′ contains t′ and (t′ 6= t &

keys[t′] == null)
10: if IsLoop(DAG) then
11: ResolveLoop(DAG);
12: continue;
13: else
14: keys[t′]=Discovery(G, t′);
15: if Rank(p′)≥ min rank then
16: Delete(DAG, t);
17: return p′ ;
18: if Instance(p′)≥ min instance then
19: Prune(p′);
20: return keys

the key is done. If a candidate key does not satisfy the min-
imum number of instances (min instance), we prune all ex-
pansions of this key (k5). Candidate key k4 contains a recur-
sive reference to sub-entity ‘director’, and we add the ‘movie’
to ‘director’ reference to the DAG, and recursively mine for
director keys. Once a key is found for the sub-entity director
(e.g., Q6(x)) we resume key mining for movies. Keys such
as k8 are preferred for its minimality and maximal coverage.

Figure 3: Search tree for the movie entity.

4. CHALLENGES & NEXT STEPS
Discovering keys over dynamic graphs poses additional

challenges that require modeling the frequency and type
of changes (topological vs. labels), and identifying spatial
and temporal correlations among these updates. We outline
challenges in each of these areas as our next steps.
Key mining over dynamic graphs. Dynamic graphs
require us to develop a change model that tracks informa-
tion such as the type of change (topological, labels, val-
ues), the frequency of change, and the longevity of values

in the graph (i.e, some values may persist for longer peri-
ods of time). This data serves as input into an extension
of KeyMiner that considers incremental repairs to already
discovered keys, similar to constraint repairs over relational
data [5]. During candidate key selection, the rank function
can be updated to prefer keys containing persistent graph
patterns to minimize the need for future repairs, or to iden-
tify keys with sufficiently high coverage.

KeyMiner can also be used to discover keys that hold un-
der different interpretations. Similar to ontology FDs that
interpret FDs w.r.t. the concepts and relationships in an
ontology [3], a key may hold only under a given context.
Knowledge bases may contain entities that are defined w.r.t.
a geographic or domain-specific interpretation. For exam-
ple, the data properties to uniquely identify a prescription
drug are often country specific according to federal drug ad-
ministration rules, how the drug is used to treat illnesses,
and regional conventions used to market prescription drugs.
Temporal keys: Changes to the graph may exhibit spatial
correlations where specific nodes are frequently updated to-
gether, e.g., movie name and year. Such updates often follow
a temporal locality where values that were recently updated
are likely to be updated again the near future. We explore
temporal key constraints: graph keys that hold over a spe-
cific window of time. These temporal constraints are defined
as part of the schema, and serve as a tool for understanding
the evolution of keys and the graph.

5. REFERENCES
[1] IMDB Movie Graph Database,

https://datasets.imdbws.com, 2018 (accessed Apr. 20).

[2] M. Atencia, M. Chein, M. Croitoru, J. David,
M. Leclère, N. Pernelle, F. Säıs, F. Scharffe, and
D. Symeonidou. Defining key semantics for the rdf
datasets. In ICCS, pages 65–78, 2014.

[3] S. Baskaran, A. Keller, F. Chiang, L. Golab, and
J. Szlichta. Efficient discovery of ontology functional
dependencies. In CIKM, pages 1847–1856, 2017.

[4] P. Buneman, S. Davidson, W. Fan, C. Hara, and
W.-C. Tan. Keys for xml. Computer networks,
39(5):473–487, 2002.

[5] F. Chiang and R. Miller. Active repair of data quality
rules. In Intl. Conf. on Information Quality (ICIQ),
pages 174–188, 2011.

[6] X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn,
K. Murphy, S. Sun, and W. Zhang. From data fusion
to knowledge fusion. VLDB, 7(10):881–892, 2014.

[7] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and
P. Kalnis. Grami: Frequent subgraph and pattern
mining in a large graph. VLDB, pages 517–528, 2014.

[8] W. Fan, Z. Fan, C. Tian, and X. L. Dong. Keys for
graphs. VLDB, 8(12):1590–1601, 2015.

[9] W. Fan and P. Lu. Dependencies for graphs. In
PODS, pages 403–416, 2017.

[10] Y. Huhtala, J. Kärkkäinen, P. Porkka, and
H. Toivonen. Tane: An efficient algorithm for
discovering functional and approximate dependencies.
The computer journal, 42(2):100–111, 1999.

[11] C. H. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos,
M. J. Zaki, and A. Aboulnaga. Arabesque: a system
for distributed graph mining. In SOSP, pages 425–440,
2015.


